Porcine Respiratory & Enteric Disease Diagnostics:
Utilizing Appropriate Tools for Success

Phil Gauger, DVM
ISU-VDL
Veterinary Diagnostic & Production
Animal Medicine
Swine Production: Opportunities

• The swine industry continues to evolve:
 – Profitable benchmarking
 • Pigs weaned/female/year
 • Pigs born alive/litter
 – Maximizing efficiency
 • Feed efficiency
 • Average daily gain
 – Improving genetics
 • Affects benchmarks and efficiency
 – Innovation
 • Technology, facilities, welfare, records/IT
Swine Production: Challenges

- Animal welfare
- Market competition
- Elevated production costs
- Regulations
- DISEASE

Sustainability
- Society
- Environment
- Economy

Meat Safety
Meat Quality
Health
Genetic Resources
Economy
Working Conditions
Animal Welfare
Societal Conformity
Environmental impact
ISU-VDL: Diagnosing Disease

Top 10 Species Submitted in 2011

- Porcine: 61.6%
- Bovine: 15.6%
- Canine: 7.6%
- Avian: 7.1%
- Equine: 4.5%
- Feline: 1.6%
- Caprine: 0.5%
- Bat: 0.5%
- Ovine: 0.4%

Species Prevalence
Decreased Frequency of Detection

- *Salmonella choleraesuis*
- *Actinobacillus pleuropneumoniae*
- *Bordetella bronchiseptica*

WHY?
Many reasons:
- Improved biosecurity
- Production methods
- Vaccination
Increased Frequency of Detection

- *Streptococcus suis*
- *Haemophilus parasuis*
- *Mycoplasma hyorhinis*
- *Actinobacillus suis*
- *PRRSV*
ISU-VDL: Swine Respiratory Disease

Percentage of Porcine Respiratory Cases by Etiology

2011 – 2012 data
Porcine Disease: Pignostics

- Goal: Detecting pathogens of interest
 - Collecting the appropriate samples

- Tissue: lung
- Serum/Blood
- Nasal swab
- Feces
Porcine Oral Fluids

• Oral fluids defined:
 – Saliva
 – Oral mucosal transudate
 • Fluid from blood capillaries

• Oral fluids contain:
 – Pathogens: viruses and bacteria
 – Antibodies

• Oral fluids in humans
 – HIV, Measles, etc.

http://www.pig333.com/what_the_experts_say/oral-fluids-sampling_4761/
Oral Fluids: Pathogens

• Virus detection
 – PRRSV
 – Influenza virus in swine
 – Porcine circovirus type 2

• Bacteria detection
 – *Mycoplasma hyopneumoniae*
 – *Haemophilus parasuis*
 – *Mycoplasma hyorhinis*
Oral Fluids: Diagnostic Tests

• What can we do with oral fluids?
 – PCR: detects the presence of the pathogen
 • Detects small amounts of viruses or bacteria
 • Highly sensitive test
 – PRRSV, Influenza virus in swine, Porcine circovirus type 2
 – M. hyopneumoniae, Haemophilus parasuis, M. hyorhinis
 – ELISA: detects if the pathogen has been there
 • Detects small or large amounts of antibodies in the sample
 • Highly sensitive test
 – PRRSV
 – Influenza antibodies: coming soon
 – Tests require validation before available
 • Make sure the test works
Oral Fluids: Advantages

• Pros, benefits, advantages:
 – Sample collection is rapid
 • Requires about 30 minutes depending on age of pig
 – Sample collection is easy
 • Requires minimal skill
 – Sample collection requires few materials
 • 100% cotton rope (no chemicals)
 • Sterile plastic tube (50 cc)
 • Plastic Ziploc bag (gallon)
 • Scissors

• Nursery pigs
 – 1/2” rope

• Grow/Finish/Adult swine
 – 5/8” rope

Oral Fluids: Sample Collection

- Suspend cotton rope
 - Clean area of pen
 - Away from water, feed, feces
 - Hang at shoulder height
 - Use brackets, gate, chains, etc.

http://www.pig333.com/what_the_experts_say/oral-fluids-sampling_4761/
Oral Fluids: Sample Collection

- **Post-collection**
 - Remove the ‘dry’ portion of the rope
 - Place ‘wet’ portion of rope in plastic bag
 - Squeeze or twist the rope in the bag
 - Collects saliva in the bag and not on the floor
 - Remove a corner of the plastic bag
 - Pour saliva contents into plastic tube

- **Refrigerate or freeze**
 - Approximately 5 cc, preferably more
 - Ship/send as quickly as possible
 - Keep cool and on ice
Oral Fluids: Sample Collection

Oral Fluids: Advantages

- Samples multiple pigs; one specimen
 - “Grab” sample from a population
 - Random number of pigs chew on the rope in a pen
 - Increases the chance of detecting infection
 - Greater representation of the population
 - Reduces need to select particular pigs
- Sampling recommendation
 - 1 rope per 150 pigs
 - 6 ropes per 1200 head finisher
 - Randomly spaced through barn
 - Select individual pens

- Early detection of pathogen
- Sample at 2 week intervals
Oral Fluids: Advantages

- Non-invasive process
 - Eliminates need for:
 - Needles, syringes, hog catcher
 - Less stress, fewer risks
 - Safe, manageable

- Samples are easy to collect
 - Requires minimal skill
 - Requires minimal time
 - 30 minutes, collect, freeze/send

- Less expensive
 - Reduced cost associated with testing multiple animals
 - Materials are inexpensive, stored in bulk
 - More applications are becoming available

- Animal welfare
 - Satisfies producer desire to handle pigs with care
Oral Fluids: Sampling

- Multiple ages
 - Suckling/neonatal piglets
 - Nursery pigs
 - Grower/finisher pigs
 - Dams and boars

Most common

Individual samples
Oral Fluids: Application

• How do we use oral fluids in production systems?
 – Prognostic profiling
 • Monitor pathogens circulating in swine populations
 – What is present at the time of sampling?
 » Viruses and bacteria
 » Other – perhaps in the future
 – Early detection of the pathogens of interest
 • Forecasts the health of the pig population
 – What may occur in the immediate future
 » Infection status
 » Vaccination antibody status
 » Vaccination virus shedding
 » Affects on productivity
Oral Fluids: Application

• Surveillance of a group of pigs
 – Most common use (prognostic profiling)
 – Detection of pathogens: is it present in the sample?
 • At the time of collection
 • Sample collection every two weeks
 – Questions that may be answered with oral fluids:
 • Are pigs infected with a pathogen?
 – Are the pigs presenting with clinical signs
 – PRRSV, PCV, influenza, M. hyopneumoniae
 • Nursery pigs
 • Grow/finish pigs
 • Any age
Oral Fluids: Application

• Surveillance of a group of pigs
 – Questions that may be answered with oral fluids:
 • Are pigs still shedding a pathogen?
 – Post live virus inoculation in a herd
 – Post modified live virus vaccination
 – PRRSV
 • Any age – prior to movement of animals
 • Replacement animals
 • GDU
 – We don’t want to expose a stable population to a virus
Detection of virus: Oral fluid = Serum

Infection/Vaccination

Oral Fluids: Application

• Surveillance of a group of pigs
 – Questions that may be answered with oral fluids:
 • Did pigs produce an antibody response?
 – Detectable antibodies: PRRSV after LVI or exposure
 – Post-vaccination: did pigs receive their vaccine?
 – Prior to movement or exposure to endemic pathogens
 • Replacement animals
 • Any age
Oral Fluids: Application

• Monitoring
 – Checking if swine are negative for pathogens
 – Questions that may be answered with oral fluids:
 • Are pigs negative for a pathogen as represented?
 – Transporting negative pigs?
 – Weaning PRRSV negative pigs?
 – Purchasing negative animals or breeding stock?
 – Negative animals post-isolation?
 • Nursery pigs or any age
 • Replacement animals
 • Boar studs
Oral Fluids: Application

• Vaccination
 – Questions that may be answered with oral fluids:
 • When should I vaccinate?
 – Vaccinate prior to exposure
 » Use oral fluids to help understand when pigs become infected
 • Nursery pigs

• Virus isolation
 • Can I isolate and sequence pathogens in the system?
 – Isolate a virus for sequencing
 » Compare to other viruses previously in the system
 » Use for autogenous vaccine production
 • All ages

Control, elimination, eradication of pathogens
Oral Fluids: Disadvantages

• Cons, pitfalls, disadvantages
 – Small piglets may require training
 • Suckling pigs or piglets nursing dams
 • Not impossible
 – Pigs can be trained to chew on cotton ropes
 – True for any age (small nursery pigs)
 – Entice pigs using a practice rope thrown in pens
 – Flavor practice ropes with sugar solution.
 – Sample quality affects testing
 • Sample inhibitors that may affect the test
 – Dirt, feces, enzymes
 • Viral/bacterial degradation
 • Difficulty isolating and sequencing pathogens
Oral Fluids: Disadvantages

• Cons, pitfalls, disadvantages
 – Environmental contamination
 • Pathogens that remain in the environment can be detected
 – Clean and disinfect between groups of pigs
 – This is only true for pathogens that persist in the environment
 » Porcine circovirus
 – Follow-up testing may be necessary
 – Antibodies in oral fluid from plasma protein in feed
 • Antibody tests will detect antibodies in feed
 – Only if plasma protein products are utilized in the feed
 » Nursery pig feed most common
 – The antibodies are detected in the oral fluid
 » False positive results
 – Remove plasma protein and pigs are negative
 » Typically 24 hour time frame
Oral Fluids: Disadvantages

- Cons, pitfalls, disadvantages
 - Detection but poor isolation of pathogen
 - Suboptimal success at isolation of pathogens
 - May need to use another sample type for autogenous vaccine production
 - Detection but not a diagnosis
 - Detection does not indicate a diagnosis of disease
 - Diagnostic samples (tissue, blood, etc.)
 - Prognostic profiling: herd level versus animal level

Use your veterinarian
Oral Fluid: Implications

• Do not pool oral fluids
 – Oral fluids are already collected from multiple animals
 – Do not combine samples into one composite

• Purchase cotton rope through the internet
 – Not always available at local stores
 – Don’t use synthetic material

• Cotton rope (1/2” to 5/8”)

• Train pigs when reluctant to approach the rope

• Collect samples during morning hours
 – Pigs are typically more active
Oral Fluid: Implications

- Hang shoulder height
 - Keep away from the water supply and feeder
 - Don’t use rope that is too long
- 20-30 minutes in the pen is sufficient
- Squeeze rope in plastic bag or bootie
 - Pour into a suitable tube for submission
- 5 ml of oral fluid is ideal
- Freeze or chill
- Do not re-use old ropes
- Don’t swab the pig’s mouth
Percentage of Porcine Enteric Cases by Etiology

Frequency of diagnosis at the ISU-VDL: All ages

2011 - 2012

- Rotavirus
- Salmonella spp.
- Hemolytic E. coli
- Lawsonia
- E. coli
- Idiopathic enteritis
- TGE
- Coccidia
- Salmonella group B
- Bact.
- C. difficile
- Brachyspira spp.
- C. perfringens
- PCV
- viral
Frequency of Enteric Disease Diagnosis by Age

Neonate: 0 - 3 Weeks Old

- Rotavirus: 50%
- Bacterial: 0%
- E. coli: 10%
- C. difficile: 20%
- Salmonella: 30%
- C. perfringens: 40%
- Coccidiosis: 50%
- Viral: 0%
- TGE: 0%
- Ileitis: 0%

Nursery: 3 – 8 Weeks Old

- Rotavirus: 50%
- E. coli: 40%
- Salmonella: 30%
- Coccidiosis: 20%
- Viral: 10%
- Bacterial: 0%
- TGE: 0%
- Ileitis: 0%
- Brachyspira: 0%
Frequency of Enteric Disease Diagnosis by Age

Grow/Finish Swine: 8 - 26 Weeks Old

- Enteritis
- Salmonella
- E. coli
- TGE
- Brachyspira
- Bacterial
- Rotavirus
- Hem. bowel
- Coccidia
- PCV2
Postweaning Enteric Disease: Samples

- **Antemortem**
 - Feces or fecal swabs
 - Collection
 - Representative pigs or fecal samples
 - Feces from 10-15 affected pigs
 - Fecal swabs from 15-30 affected pigs
 - Pools feces or swabs up to 5 samples
Postweaning Enteric Disease: Samples

• Fecal Swabs
 – Synthetic swab (dacron or rayon) plastic shaft
 – Keep cool, prevent drying during transit
 • Viral/bacterial transport media, PBS, saline
 • Avoid agar gel-type media
 • Avoid calcium alginate-tipped swabs
 – May inhibit testing ability
 – Ask your veterinarian
 – Starswab II, Copan E-swab
Postweaning Enteric Disease: Samples

• Postmortem Samples:
 – Select 3 – 4 recently sick pigs
 • Euthanize appropriate animals with approved methods
 • Select animals representative of the problem
 • Submit tissues from more than 1 acutely affected animal

• Always submit both small intestine and colon
 – Fresh: chilled, submit on ice

• Feces
 – Collect from the colon not the small intestine
Enteric Disease: Porcine Rotavirus

- Increased frequency of detection
 - Test sensitivity, increased testing, other?
Rotavirus: Serotype Age Distribution

- **PCR: Serotypes A, B and C**
- **Rotavirus detection by age:**
 - Rotavirus Type A:
 - More frequently detected 3 – 6 weeks
 - Rotavirus Type C
 - More frequently detected < 1 week of age

Group A
- 39% < 1 week
- 29% 1-3 weeks
- 25% 3-6 weeks
- 7% > 6 weeks

Group B
- 31% < 1 week
- 16% 1-3 weeks
- 31% 3-6 weeks
- 22% > 6 weeks

Group C
- 56% < 1 week
- 25% 1-3 weeks
- 9% 3-6 weeks
- 10% > 6 weeks
Enteric Disease: TGE

- Less common in farrowing and nurseries
Finisher Pigs: Ileitis

- Grow/finish pigs
 - Easily over or under estimated
 - Feces and fecal swabs
 - Select tissues for lesion evaluation
 - Small intestine
 - Colon

![Ileitis Graph]

Ileitis

- Total Number of Cases
- Year

IOWA STATE UNIVERSITY
Veterinary Diagnostic Laboratory
Enteric Disease: Brachyspira

- *Brachyspira*-associated colitis
- “Bloody Scours”
 - Colon, feces, fecal swabs
 - *Brachyspira*
 - *hyodysenteriae*
 - *Hampsonii*
 - New species
 - *pilosicoli*
 - *murdochii*
 - *intermedia*
 - *Innocens*

![Bar chart showing the total number of cases diagnosed from 2003 to 2012. The chart indicates a significant increase in cases from 2010 onwards.]
Enteric Disease: Bacteria

• Hemolytic *E. coli*
 – Fimbrial genes
 • K88, F18, 987p, F41
 – Toxin genes
 • Stb, Sta, LT, Stx2e

• *C. perfringens*
 – Genotypes
 • A, B, C, D and E
 – Toxin genes
 • Beta-2 and Enterotoxin
Enteric Disease: Other

- **Salmonella**
 - Bacterial culture and lesions

- **Coccidia**
 - Fecal exam
 - Intestinal lesions
Conclusion

• Work with your herd veterinarian
• Involve the veterinarian early in the disease process
• Select pigs that recently became sick for sampling
• Oral fluids
 – Easy to collect and useful diagnostic tool
 – Interpret results with your veterinarian
• Enteric disease
 – Fecal samples
 – Fresh tissue from recently sick pigs
Acknowledgments

• Iowa State University
 – Diagnostic Laboratory Staff
• Veterinarians
• Clients and producers