Strategies to control & eliminate PRRSv from breeding herds

Daniel Linhares, DVM, MBA, PhD
Assistant Professor, Veterinary Diagnostic and Production Animal Medicine
Iowa State University College of Veterinary Medicine

Altoona, IA
Feb 10th, 2016
Outline

1. Background – applied PRRS transmission dynamics
2. Managing PRRS, breeding herd level
 - Solutions and metrics
3. Summary
• Costs over $1.0 B / year to the US swine industry (Holtkamp et al., 2013)

• North America: efforts towards PRRSv regional elimination

• Regional elimination depends on ability to
 – decrease infection frequency in breeding herds and growing pig sites
 – increase success rate of PRRSv control & elimination projects
PRRS incidence, US swine industry

Chart 1 - PRRS cumulative Incidence / weekly and cumulative
Beginning July 1 for years 2009-2016

% of herds reporting new infections

Betlach & Morrison, Feb 5th
PRRSv infection dynamics: key points

How?
- via aerosols, direct contact (pigs, semen), indirect contact: contaminated boots, coveralls, vehicles, supplies...

PRRSv infection dynamics: key points

- **Virus in blood (PCR):** 1 to ~35 dpi
- **Peak:** ~1 week
- **Antibodies (ELISA):** Beginning ~1 wk, ~90% @ 2wks

- **Virus in lung, tonsils, lymph nodes (PCR):** 1st day to ~5-6 months

Shedding (transmission): from day 1 to ~3 months
- ~3-6 weeks: Protective immunity
 - This is at individual (pig) level.
 - At pop'n level, all pigs don't get infected at the same time. Thus, depending on pig flow, infection can persist in the population forever.

This is why we want to manage (control / stabilize) PRRSv infection in farms and whenever feasible, we want to eliminate it from herds, systems, regions.
Science of herd closure

Susceptible → Infected (shedding) → Resistant (no shedding, no disease) → No PRRS transmission
Each susceptible gilt introduction into non-stable PRRSv herd:
= re-start PRRS clock (i.e. wood in fire)
Introduction of susceptible gilt into stable PRRSv herd:
= keeps gilt “susceptible” (not infected, not sick, not PRRSv source)
Evaluation of immune management strategies to control PRRSv

Comparison of time to PRRSv-stability and production losses between two exposure programs to control PRRSv in sow herds

D.C.L. Linharesa,*, J.P. Canob, M. Torremorellc, R.B. Morrisonc

a Agroceres PIC, Rua 1 JN, 1411, Rio Claro, SP 13502-741, Brazil
b Boehringer Ingelheim Vetmedica Inc., 3902 Gene Field Road, St. Joseph, MO 64506, USA
c University of Minnesota, College of Veterinary Medicine, 385B Animal Science Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
Study design & methods

Prospective study:

Breeding herds acutely infected with PRRSv

Herd closure + LVI (n=41)

Herd closure + MLV (n=20)

Time to negative pig (TTNP)

TTNP definition based on PRRSv monitoring:
- Herds were monitored for PRRSv by serum RT-PCR
- Monthly testing 30 piglets, starting at 12 weeks post intervention
- Herds achieved TTNP when 4 consecutive negative tests were obtained
 - Based on Am. Assoc. Swine Vet.’s PRRS herd classification 2b (Holtkamp et al., 2011)
The effect of treatment (LVI, MLV) on TTS was adjusted by the following covariates*:

- Number exposures (doses)
- LVI vs MLV
- Veterinary clinic
- Prior PRRSv infection
- RFLP pattern 1-4-4
- Days from detection to LCE

Statistical analysis:
- Descriptive statistic
- Kaplan-Meier & Cox proportional hazards regression

* Information on covariates collected using a survey at the moment of farm enrollment
“200 days” was not enough to achieve TTNP for ~half of the herds:

% herds that achieved TTNP

Weeks post whole-herd inoculation

Cumulative TTNP - all farms

84 days 200 days 300 days

~40% herds: ≥ 1 PCR-neg followed by PCR-positive
Treatment: LVI vs MLV

Median TTNP and 95% CI:
LVI: 26.3 (22.57, 29.57)
MLV: 33.0 (32.00, 41.00)

(Log rank p-value 0.0171)
Prior PRRSV-infection: yes vs no

Median TTNP and 95% CI:
Prior_infect.: 26.00 (20.71, 30.57)
No prior inf.: 32.57 (26.28, 38.00)

(Log rank p-value 0.0066)
Effect of LCE treatment on productivity

Part 2 of the study...
MLV herds had less total losses

Difference of 1,443 pigs / 1,000 sows

Wilcoxon p-value 0.0171
MLV achieved TTBP sooner than LVI

Log rank p-value <0.0001
TTBP was shorter for herds w/ “prior PRRS-infection” and herds of a specific veterinary clinic:

Log rank p-value <0.0014

Log rank p-value <0.0031
Production level was not a good predictor of time-to-negative. Biosecurity and management practices should remain strict until Negative.
Economic analysis of immunization strategies for PRRS control

Linhares D; Johnson C; Morrison R. PLOS One 10(12).

☑ LVI or MLV?
☑ Preventive vaccination?
The MLV program was economically advantageous compared to the LVI program.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cost to expose</th>
<th>Opportunity Cost for pigs not weaned</th>
<th>Opportunity cost for W-F performance</th>
<th>Total OC*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exposure</td>
<td>TTBP</td>
<td>Total loss</td>
<td>OC*</td>
</tr>
<tr>
<td>MLV</td>
<td>$3,000</td>
<td>12</td>
<td>1,222</td>
<td>$81,532</td>
</tr>
<tr>
<td>LVI</td>
<td>$100</td>
<td>20</td>
<td>2,665</td>
<td>$177,809</td>
</tr>
<tr>
<td>Difference (MLV-LVI)</td>
<td>$96,277</td>
<td>(66,829)</td>
<td>$26,548</td>
<td></td>
</tr>
</tbody>
</table>

* OC = Opportunity cost
Economically worth it to preventively vaccinate herds to “build” PRRSv herd immunity?

Lower production impact if wild type PRRSv is introduced*

Considering attenuated PRRSv impact: 1.5 PSY, $1.00 growth performance

Break even = 1 year & 9 months (Linhares, Johnson, Morrison, 2015 PLOS One)

Continuous impact on PSY, growth performance**

* Linhares et al., 2013
**Johnson, 2013 (field data); Bøtner et al., 1997; Dewey et al., 1999 and 2004; Nielsen et al., 2002
Part 4 of the study…

Couple slides on success rate...
Herds that adopted LCE and completed PRRSv monitoring: 70% LVI and 75% MLV reached AASV category III

<table>
<thead>
<tr>
<th></th>
<th>Failure (reinfected)</th>
<th>Success (negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVI</td>
<td>12 (30%)</td>
<td>28 (70%)</td>
</tr>
<tr>
<td>MLV</td>
<td>4 (25%)</td>
<td>12 (75%)</td>
</tr>
</tbody>
</table>

P = 0.2441

<table>
<thead>
<tr>
<th></th>
<th>Failure (reinfected)</th>
<th>Success (negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVI</td>
<td>9 (24%)</td>
<td>28 (76%)</td>
</tr>
<tr>
<td>MLV</td>
<td>1 (8%)</td>
<td>12 (92%)</td>
</tr>
</tbody>
</table>

P = 0.1574

Failures:
LVI: 3 new, 9 old; MLV: 3 new, 1 old
For herds that achieved TTNP:
80% LVIs and 86% MLVs reached AASV Category III

<table>
<thead>
<tr>
<th></th>
<th>OLD and NEW</th>
<th>OLD only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Failure (reinfected)</td>
<td>Success (negative)</td>
</tr>
<tr>
<td>LVI</td>
<td>7 (20%)</td>
<td>28 (80%)</td>
</tr>
<tr>
<td>MLV</td>
<td>2 (14%)</td>
<td>12 (86%)</td>
</tr>
</tbody>
</table>

P = 0.2979

P = 0.1943

Failures:
LVI: 2 new, 5 old; MLV: 2 new
Summary
General conclusions

Success rate
MLV ≈ LVI

LCE with serum or vaccine?

TTNP
↓ LVI

Total loss
↓ MLV

TTBP
↓ MLV

productivity
↓ MLV

Cost/benefit:
MLV

Total loss
↓ MLV

Total production
↓ MLV

Impact on productivity
↓ MLV

Success rate
MLV ≈ LVI

Cost / benefit:
MLV
General conclusions (continued)

• Herds achieved TTS sooner and had a less severe PRRSv break when:
 – There was prior PRRSv infection in the 3 years prior to study
 – Herds were part of a particular production system

• PRRSv monitoring:
 – Needs to be repeated over time
 – Monitoring scheme suggested by AASV (2011), which is based on n=30 samples/month over 4 months assumes that PRRSv infection dies out within 90 days once prevalence is below 10%. We showed that this was not always the case
 – Don’t rely on sow farm productivity as sign that PRRSv is out
Best strategy?

<table>
<thead>
<tr>
<th>Herd characteristics and PRRSv infection history</th>
</tr>
</thead>
<tbody>
<tr>
<td>prior immunity</td>
</tr>
<tr>
<td>nearby swine density</td>
</tr>
<tr>
<td>frequency of virus introduction</td>
</tr>
<tr>
<td>building layout</td>
</tr>
<tr>
<td>overall biosecurity level</td>
</tr>
<tr>
<td>parity segregation, batch farrowing</td>
</tr>
<tr>
<td>PRRSv status and PRRSv genetic line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practices to control PRRSv infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilt exposure</td>
</tr>
<tr>
<td>Time gilt exposed to sow farm introduction</td>
</tr>
<tr>
<td>Sow exposure program</td>
</tr>
<tr>
<td>bio-management practices</td>
</tr>
<tr>
<td>Frequency of whole herd exposure</td>
</tr>
<tr>
<td>Herd closure-associated practices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to produce negative pig</td>
</tr>
<tr>
<td>Time to baseline production</td>
</tr>
<tr>
<td>Total loss attributed to PRRS</td>
</tr>
</tbody>
</table>

Proposed model: Linhares & Holtkamp
General recommendations for PRRSv control / elimination – sow herds

<table>
<thead>
<tr>
<th>What</th>
<th>Target, Elimination path</th>
<th>Target, Control path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus circulation (prevalence)</td>
<td>Zero</td>
<td>Low</td>
</tr>
<tr>
<td>Type of PRRS virus</td>
<td>From wild type to none</td>
<td>From wild type to MLV</td>
</tr>
<tr>
<td>Incoming gilts</td>
<td>Naïve when prevalence reaches zero</td>
<td>Previously immunized (2-3 months)</td>
</tr>
<tr>
<td>semen</td>
<td>Naïve</td>
<td>Naïve</td>
</tr>
<tr>
<td>Weaned pig vaccination strategy</td>
<td>Depends on probability of infection and type/severity of PRRSv in the neighborhood</td>
<td>Depends on probability of infection and type/severity of PRRSv in the neighborhood</td>
</tr>
</tbody>
</table>
Thank you very much!

Daniel Linhares, DVM, MBA, PhD
Veterinary Diagnostic and Production Animal Medicine
Iowa State University College of Veterinary Medicine
Office: (515) 294-9358 · Mobile: (515) 357-1044
Linhares@iastate.edu
http://field-prrs.blogspot.com/

http://www.smeec.iastate.edu